Estimasi Kanal Akustik Bawah Air Untuk Perairan Dangkal Menggunakan Metode Least Square (LS) dan Minimum Mean Square Error (MMSE)
نویسندگان
چکیده
منابع مشابه
Least Mean Square Algorithm
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
متن کاملLeast Mean Square Algorithm
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
متن کاملMinimum Mean Square Error (MMSE) Receiver Employing 16-QAM in CDMA Channel with Narrowband Gaussian Interference
It has been shown that employing a higher order constellation in conjunction with CDMA can improve the performance of the multiuser system in severe multipath channels. We verify that the performance improvement gained by the above interference suppression technique in the multiuser case continues to hold in the multiuser environment with narrowband Gaussian interference.
متن کاملImprovements of the Beta-Order Minimum Mean-Square Error (MMSE) Spectral Amplitude Estimator using Chi Priors
In this paper, the authors propose the Beta-Order Minimum Mean-Square Error (MMSE) Spectral Amplitude estimator with Chi statistical models for the speech priors. The new estimator incorporates both a shape parameter on the distribution and cost function parameter. The performance of the MMSE Beta-Order Spectral Amplitude estimator with Chi speech prior is evaluated using the Segmental Signal-t...
متن کاملMean square convergence analysis for kernel least mean square algorithm
In this paper, we study the mean square convergence of the kernel least mean square (KLMS). The fundamental energy conservation relation has been established in feature space. Starting from the energy conservation relation, we carry out the mean square convergence analysis and obtain several important theoretical results, including an upper bound on step size that guarantees the mean square con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Setrum : Sistem Kendali-Tenaga-elektronika-telekomunikasi-komputer
سال: 2015
ISSN: 2503-068X,2301-4652
DOI: 10.36055/setrum.v2i1.239